A Framework for Phasor Measurement Placement in Hybrid State Estimation Via Gauss–Newton

نویسندگان

  • Xiao Li
  • Tsung-Hui Chang
چکیده

In this paper, we study the placement of phasor measurement units (PMU) for enhancing hybrid state estimation via the traditional Gauss-Newton method, which uses measurements from both PMU devices and Supervisory Control and Data Acquisition (SCADA) systems. To compare the impact of PMU placements, we introduce a useful metric which accounts for three important requirements in power system state estimation: convergence, observability and performance (COP). Our COP metric can be used to evaluate the estimation performance and numerical stability of the state estimator, which is later used to optimize the PMU locations. In particular, we cast the optimal placement problem in a unified formulation as a semi-definite program (SDP) with integer variables and constraints that guarantee observability in case of measurements loss. Last but not least, we propose a relaxation scheme of the original integer-constrained SDP with randomization techniques, which closely approximates the optimum deployment. Simulations of the IEEE-30 and 118 systems corroborate our analysis, showing that the proposed scheme improves the convergence of the state estimator, while maintaining optimal asymptotic performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Placement of Phasor Measurement Units in Khorasan Network Using a Hybrid Intelligent Technique

In this paper, an efficient and comprehensive hybrid intelligent technique for the optimal placement of phasor measurement units (PMUs) is proposed to minimize the number of PMU installation subjected to full network observability. Three main purposes of PMUs output synchronous measurements are monitoring, control, and protection of power system. We have combined Binary Imperialistic Competitio...

متن کامل

Spurious Critical Points in Power System State Estimation

The power systems state estimation problem computes the set of complex voltage phasors given quadratic measurements using nonlinear least squares (NLS). This is a nonconvex optimization problem, so even in the absence of measurement errors, local search algorithms like Newton / Gauss–Newton can become “stuck” at local minima, which correspond to nonsensical estimations. In this paper, we observ...

متن کامل

Spurious Local Minima in Power System State Estimation

The power systems state estimation problem computes the set of complex voltage phasors given quadratic measurements using nonlinear least squares (NLS). This is a nonconvex optimization problem, so even in the absence of measurement errors, local search algorithms like Newton / Gauss–Newton can become “stuck” at local minima, which correspond to nonsensical estimations. In this paper, we observ...

متن کامل

Presenting a New Method Based on Branch Placement for Optimal Placement of Phasor Measurement Units

In this paper, a new method based on branch placement for the optimal positioning of Phasor Measurement Units (PMUs) in power systems is proposed. In this method, the PMUs are in type of single-channel and are installed at the beginning of the branches. Therefore, they are able to measure the bus voltages. Also, the installation of the PMUs on the branches increases the security of observabilit...

متن کامل

Observability-Enhanced PMU Placement Considering Conventional Measurements and Contingencies

Phasor Measurement Units (PMUs) are in growing attention in recent power systems because of their paramount abilities in state estimation. PMUs are placed in existing power systems where there are already installed conventional measurements, which can be helpful if they are considered in PMU optimal placement. In this paper, a method is proposed for optimal placement of PMUs incorporating conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013